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Abstract. We introduce a general expression which enables the parton distribution, unintegrated over the
parton transverse momentum, to be obtained from the conventional parton densities. We use the formalism
to study the effects of the transverse momentum qt of the incoming partonic system on the calculation
of the transverse momentum spectra of prompt photons produced in high energy pp and pp̄ collisions.
For the purposes of illustration, we use the double logarithm approximation. For large qt we calculate the
effect directly from the perturbative formalism, whereas for small qt we bound the effect using two extreme
hypotheses. In both qt domains we find that the shapes of the prompt photon spectra are not significantly
modified, although the cross sections are enhanced.

1 Introduction

The cross sections for hard hadronic processes are con-
ventionally described in terms of universal parton distri-
butions a(x, µ2), with a = xq or xg, convoluted with the
cross sections of the partonic subprocesses calculated in
perturbative QCD at some large scale µ characteristic of
the subprocess. For example, µ may be the transverse mo-
mentum of an outgoing parton or the mass of a heavy
quark should it participate in the subprocess. In this paper
we present the formalism which enables the parton distri-
butions fa(x, k2

t , µ2), unintegrated over the parton trans-
verse momentum kt, to be constructed from the conven-
tional integrated distributions a(x, λ2). We will see that it
is important to distinguish the scale λ from the hard scale
µ. We first give the general prescription, and then we take
the limits which correspond to the leading log(1/x) BFKL
approach [1] and to the double log DDT prescription [2].

These unintegrated parton densities fa(x, k2
t , µ2)

should be used to describe any hard hadronic process,
such as heavy quark production or the production of large
ET jets [3]. The only exception is deep inelastic scattering
(DIS). If the kt integration is performed in the convo-
lution of the unintegrated parton distributions with the
deep inelastic partonic subprocess then the remaining x
convolution is in terms of just the conventional parton
distributions1.

To demonstrate the use of the formalism we study a
particularly relevant and topical process, namely prompt
photon hadroproduction. The production of prompt pho-

1 A somewhat analogous example is the DIS renormalization
scheme, where the higher order corrections are present in any
process except DIS, which is used as the reference process.

tons in high energy pp collisions has long played a key
role in constraining the gluon distribution of the proton at
large x through the dominance of the subprocess gq → γq.
The reason is that the gluon enters at leading order, unlike
its contribution to the description of deep inelastic scatter-
ing. However the description of the transverse momentum
spectrum of the produced photons is more problematic
than inclusive deep inelastic scattering. The observed ptγ

spectrum in pp → γX (or pp̄ → γX) is found to be steeper
than the prediction of perturbative QCD [4,5]. The ex-
planation of this discrepancy is usually attributed to the
intrinsic transverse momenta kt of the incoming partons,
which are usually assumed to have a Gaussian-like kt dis-
tribution [6,7]. Thus part of the observed ptγ comes from
the initial partonic kt such that the hard subprocess sin-
gularity dσ̂/dt̂ ∼ 1/p4

tγ is approached more closely, and
hence leads to a steeper ptγ spectrum. However in order to
describe the observed spectra it is necessary to introduce
a kt spectrum with an average value which increases from
〈kt〉 ∼ 0.5 GeV to more than 2 GeV [6] as the collision
energy

√
s increases from UA6, E706 [8,9] to Tevatron [10]

energies. Such large partonic 〈kt〉 cannot originate solely
from the large distance confinement domain, but must also
have a significant perturbative QCD component. Indeed it
is easy to show that perturbative QCD2 gives a non-zero
kt with a distribution in which 〈kt〉 increases as

√
s. [12]

also contains a discussion of the partonic kt generated by
perturbative QCD, but comparison with the ptγ data is
based on a phenomenological Gaussian kt distribution.

2 Another correction to the perturbative form of the ptγ spec-
trum comes from the resummation of log(1−xT ) terms, where
xT ≡ 2ptγ/

√
s [11]. This effect only changes the spectrum at

the larger values of xT , close to the kinematic boundary.
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Here we study the role of both the non-perturbative
and perturbative components of the incoming partonic kt

in describing the observed ptγ spectrum in high energy
prompt photon hadroproduction, that is pp (or pp̄) → γX.
Perturbative QCD is applied, at leading order, in the do-
main of large partonic transverse momentum kt > q0,
where q0 ∼ 1 − 2 GeV is the starting point of DGLAP
evolution in the global parton analyses [7,13]. In the small
kt < q0 region it proves sufficient to consider two extreme
hypotheses for the normalised non-perturbative or intrin-
sic kt spectrum:

(a) a δ(k2
t ) distribution, i.e. no intrinsic kt from the con-

finement region,
(b) a wide Gaussian distribution of width 〈k2

t 〉 ∼ 〈q2
0〉.

From these extreme possibilities we conclude that the in-
trinsic partonic transverse momentum has a rather small
effect on the ptγ spectrum. Moreover we find the effects of
kt from the perturbative domain (kt > q0) do not signifi-
cantly change the ptγ spectrum.

In Sect. 2 we introduce the unintegrated parton distri-
butions and the parton-parton luminosity function Lab(x1,
x2, qt), which is the probability of finding the incoming a, b
partons (with momenta specified by x1, k

2
1t and x2, k

2
2t)

with net transverse momentum qt = kt1 + kt2. In Sect. 3
we apply the formalism to the production of prompt pho-
tons in high energy pp or pp̄ collisions. We convolute the
luminosity functions with the hard gq → γq and qq̄ → γg
subprocess cross sections, taking into account the boost
of the final γ+parton system coming from the incoming
partonic qt. In Sect. 4, we show the effect of both the per-
turbative and non-perturbative components of qt on the
predictions for the ptγ distributions at different

√
s, to-

gether with the measured ptγ spectra. Finally in Sect. 5
we present our conclusions.

2 Unintegrated partons
and the luminosity function

To explore the effects of partonic transverse momenta we
need to know the distribution of a parton a, say as a func-
tion of its transverse momentum kt, as well as of x. A
straightforward way to obtain such a distribution is to
consider the DGLAP evolution3

∂a

∂ lnλ2 =
αS

2π

[∫ 1−∆

x

Paa′(z)a′
(x

z
, λ2
)

dz

−a(x, λ2)
∑
a′

∫ 1−∆

0
Pa′a(z′) dz′

]
, (1)

where the (integrated) parton density, a(x, λ2), denotes
xg(x, λ2) or xq(x, λ2). The first term on the right-hand-
side describes the number of partons δa emitted in the

3 For the g → gg splitting we need to insert a factor z′ in the
last integral of (1) to account for the identity of the produced
gluons.

interval λ2 < k2
t < λ2 + δλ2, while the second (virtual)

term reflects the fact that the parton a disappears after
the splitting. The second contribution may be resummed
to give the survival probability Ta that the parton a with
transverse momentum kt remains untouched in the evolu-
tion up to the factorization scale. The survival probability
is given by the double logarithmic Sudakov factor [14]

Ta(kt, µ)

= exp

(
−
∫ µ2

k2
t

αS(pt)
2π

dp2
t

p2
t

∑
a′

∫ 1−∆

0
Pa′a(z′)dz′

)
.(2)

Thus the probability to find a parton a with transverse
momentum kt which initiates our hard process, with fac-
torization scale µ, is

fa(x, k2
t , µ2)

=

(
αS(kt)

2π

∫ 1−∆

x

Paa′(z)a′
(x

z
, k2

t

)
dz

)
Ta(kt, µ). (3)

Now we have to specify the value of the infrared cut-off ∆,
which is introduced to protect the 1/(1−z′) singularity in
the splitting functions arising from soft gluon emission. In
the original DGLAP equation (1) for integrated partons
this singularity is cancelled between the real and virtual
contributions. However after the resummation of the vir-
tual terms the real soft gluon emission has to be accounted
for explicitly as it changes the transverse momentum of
the parton. That is we have to find the physically ap-
propriate choice of the cut-off ∆, which comes from the
coherence effect [14]. The most convenient way is to go
to the Breit frame where the angular ordering condition
becomes the requirement that no soft gluons are emitted
in the backward direction. In this frame the parton energy
E = µ. Then the integral over the soft gluon momentum
dz′/(1 − z′) = dω/ω covers the interval kt < ω < E,
where ω is the energy of the soft gluon. That is we take
∆ = kt/E = kt/µ. Of course the same ∆ must be used in
both the real emission integral in (3) and in the survival
probability T in (2). Below we consider two limits of the
general expression (3) for the unintegrated parton density.

In the leading log(1/x) or BFKL limit the virtual con-
tribution in the DGLAP equation, (1), is neglected and
the survival probability T = 1. Hence we come back to
the familiar prescription

fa(x, k2
t ) =

∂(a(x, λ2))
∂ lnλ2

∣∣∣∣
λ2=k2

t

. (4)

Note that in this limit the unintegrated parton density
does not depend on µ, since there are no log(1/x) terms
in the scale dependent part.

In the double logarithm limit, (3) may be written

fa(x, k2
t , µ2) =

∂

∂ lnλ2

[
a(x, λ2)Ta(λ, µ)

]∣∣∣∣
λ=kt

(5)

with survival probability

Ta(λ, µ)
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= exp

(
−
∫ µ2

λ2

αS(pt)
2π

dp2
t

p2
t

∫ 1−∆

0

dz′

1 − z′ 2Ca

)
(6)

where Cq = CF = (N2
C − 1)/2NC and Cg = CA = NC .

In this limit the cut-off ∆ is numerically small so one can
choose the value of ∆ in (1) equal to the value of ∆ in (6).
Therefore the second term of the right-hand-side of (1)
cancels the derivative ∂Ta/∂ lnλ2. To be precise, the only
double logarithmic contribution comes from the singular
1/(1 − z′) part of the diagonal splitting function Paa(z′)
in (1) which exactly equals the last integrand 2Ca/(1−z′)
in (6).

To obtain the parton-parton luminosity function we
have to perform a convolution over the distributions of
the two incoming partons a, b

Lab(x1, x2, qt) =
∫

fa(x1, k
2
1, µ

2)fb(x2, k
2
2, µ

2)

×δ(2)(k1 + k2 − qt)
d2k1d

2k2

πk2
1k

2
2

, (7)

where, for simplicity, we have omitted the t subscript on
the ki. The luminosity element, Labdq2

t , gives the probabil-
ity that the incoming partons have a net square transverse
momentum in the interval (q2

t , q2
t + dq2

t ). To leading order
all the transverse momenta are strongly ordered, and so
either k1 � k2 ' qt or k2 � k1 ' qt. In the first case we
may integrate over k1 giving∫ qt

fafb
d2k1

πk2
1

=
[
a(x1, q

2
t )Ta(qt, µ)

]
fb(x2, q

2
t , µ2), (8)

and vice versa for k2 � k1. Thus the sum of both contri-
butions may be expressed in the compact form

Lab(x1, x2, qt)

=
∂

∂λ2

[
a(x1, λ

2)Ta(λ, µ)b(x2, λ
2)Tb(λ, µ)

]∣∣∣∣
λ=qt

. (9)

A similar expression for the Drell-Yan process was origi-
nally obtained in the classic work of [2].

3 The prompt photon ptγ distribution

To obtain the cross section for inclusive prompt photon
hadroproduction we convolute the hard subprocess cross
sections for gq → γq etc. with the parton luminosity of
(9). We obtain

Eγ
dσ

d3pγ
=

dσ

dηγπdp2
tγ

=
∫

L(x1, x2, qt)
dx1

x1

dx2

x2
dq2

t

dσ̂

dt̂
dt̂

dφ

2π
(10)

×δ(ηγ − . . .)δ(p2
tγ − . . .)θ

(
µ2 − q2

t

)
θ(|t̂| − q2

t )

where φ is the azimuthal angle between qt and the photon
transverse momentum p′

t in the hard subprocess. That is

k1

kq t
γ

k2 t ′

kq

Fig. 1. A schematic diagram describing both the subprocesses
gq → γq and q̄q → γg, in which the hard momentum transfer
squared is either t̂ or t̂′ respectively

p′
t = 1

2M sin θ, where θ is the polar scattering angle in the
hard subprocess and M2 = ŝ is the invariant mass squared
of the produced γq system. We thus have

t̂ = −M2

2
(1 − cos θ) (11)

in the hard subprocess cross section dσ̂/dt̂. The theta func-
tions in (10) impose the physical requirements that the
partonic transverse momentum should be less than, first,
the scale µ and, second, the momenta in the hard sub-
process. The last condition comes from the fact that at
leading order all the transverse momenta along the chain
are strongly ordered. For the hard subprocess initiated by
the gluon (k1) and the quark (k2) of Fig. 1 the virtualities
k2
1, k

2
2 � |t̂|. It means that q2

t ' max(k2
1, k

2
2) < |t̂|. Fig. 1

also describes the q̄q → γg subprocess but now k2
2 = t̂′

plays the role of the hard momentum transfer and strong
ordering implies k2

q̄ , k2
q � |t̂′|. Thus the product Ldσ̂/dt̂

in (10) should be understood as the sum over the differ-
ent subprocesses, that is, as

∑Labdσ̂ab/dt̂ab where t̂gq = t̂

and t̂q̄q = t̂′ in Fig. 1.
The introduction of the delta functions in (10) is sim-

ply a technical device to enable the differential cross sec-
tion to be expressed in terms of ηγ and p2

tγ . Let us study
the relevant kinematics. If the outgoing γ+ parton system,
of mass M and rapidity ηM , is boosted with the incoming
“partonic” transverse momentum qt, then the rapidity ηγ

and transverse momentum ptγ of the photon become

ηγ = ηM +
1
2

ln
(

M⊥ + qs + M cos θ

M⊥ + qs − M cos θ

)
, (12)

p2
tγ =

M2

4
sin2 θ +

(q2
t + q2

s)
4

+
M⊥qs

2
, (13)

where

qs ≡ qt sin θ sinφ, M2
⊥ ≡ M2 + q2

t . (14)

Equations (12) and (13) specify the missing parts of the
delta functions in (10). As the variables ηM and M have
been used to specify the Lorentz boost it is convenient to
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write the integration over the luminosity in (10) in terms
of dM2dηMdq2

t . This is most easily done by noting that∫
dx1

x1

∫
dx2

x2
δ(M2 − x1x2s + q2

t )δ
(
ηM − 1

2 ln(x1/x2)
)

=
1

M2
⊥

. (15)

We may use the first delta function in (10) to perform
the dηM integration and the second delta function δ(p2

tγ −
. . .) to perform the M2 integration. Then, using d|t̂| =
1
2M2 sin θdθ, we can rewrite (10) in the form

Eγ
dσ

d3pγ
=
∫

L(M2, ηM , q2
t )

dq2
t

M2
⊥

dφ

2π

dσ̂

d|t̂| (16)

× 2M2dθ

sin θ + (qt/M⊥) sinφ
θ
(
µ2 − q2

t

)
θ
(|t̂| − q2

t

)
,

with M⊥ specified by δ(p2
tγ − . . .), that is by

M⊥ = −qt
sinφ

sin θ
± 1

sin θ

√
4p2

tγ − q2
t cos2 θ cos2 φ. (17)

Of course we may only use solutions of this latter equation
which satisfy M⊥ > qt.

4 Effects of partonic qt

on the photon spectrum

It is informative to look at the form of the luminosity func-
tion Lgq as a function of the transverse momentum qt of
the incoming partonic (gq) system, before we consider the
effects of qt on the ptγ spectrum of hadroproduced prompt
photons. Fig. 2 shows Lgq obtained from (9), for values of
qt in the perturbative domain (qt > q0), at the energies
of the UA6 and CDF experiments. We use MRS(R2) par-
tons [15] and take q2

0 = 1.25 GeV2. At the higher Tevatron
energy,

√
s = 1.8 TeV, we see that the qt distribution is ex-

tensive, whereas at the lower energy,
√

s = 24.3 GeV, the
luminosity goes negative for sufficiently large qt. At this
point we set L = 0 for larger values of qt. The negative
values are an artefact of the double logarithmic approxi-
mation on which (9) is based; the derivative ∂Ta/∂ lnλ2

does not exactly cancel the second (virtual) term in the
DGLAP equation (1). The use of the full treatment based
on (3) and (7) would not suffer from this defect.

We must, in addition, consider partonic transverse mo-
mentum in the domain qt < q0. In this region we cannot
use perturbative QCD and, moreover, we have no knowl-
edge of the parton distributions at scales λ <∼ q0. On the
other hand a significant part of the total luminosity comes
from the region qt < q0 for prompt photon hadroproduc-
tion at the lower energies, that is

√
s ∼ 30 GeV. We may

quantify this since the integrated luminosity L0 coming
from the region qt < q0 can be obtained directly from (9)

L0 = a(x1, q
2
0)Ta(q0, µ)b(x2, q

2
0)Tb(q0, µ). (18)

0
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Fig. 2. The parton luminosity function Lgq(x1, x2, qt) of (9)
as a function of the incoming partonic qt for ptγ = 4 GeV at
the UA6 energy of

√
s = 24.3 GeV and for ptγ = 20 GeV at

the Tevatron energy of
√

s = 1800 GeV. In each case we take
x1 = x2 = xT = 2ptγ/

√
s. The hard scale µ is taken to be ptγ

Table 1. The integrated luminosity from the perturbative
(qt > q0) and non-perturbative (qt < q0) domains for typi-
cal values of

√
s, x1, x2. We take q2

0 = 1.25 GeV2 and the hard
scale µ = ptγ

√
s (GeV) x1 = x2 Lgq(qt > q0) Lgq(qt < q0) Fraction from

qt < q0

25 0.3 0.062 0.160 0.72
50 0.3 0.095 0.048 0.34
100 0.3 0.0851 0.0103 0.11
500 0.3 0.0444 0.0001 2 × 10−3

1800 0.3 0.0291 1.4 × 10−6 5 × 10−5

1800 0.03 1.16 0.0016 1 × 10−3

Typical results are given in Table 1 in the relevant energy
range. We show the luminosity integrated over the pertur-
bative domain (qt > q0) together with L0 for given values
of x1 = x2. We have fixed the value of x1 = x2 = 0.3 in
order to investigate the energy behaviour of the luminos-
ity. For fixed x1 = x2 and increasing

√
s, the correspond-

ing value of ptγ increases and we see that the fraction of
the luminosity coming from the non-perturbative region
decreases rapidly. At

√
s = 1800 GeV we also give the

luminosity at a more experimentally representative value,
x1 = x2 = 0.03, where it is much larger.

In order to investigate the effect of the partonic qt on
the prompt photon ptγ spectrum we need, not just the
integrated luminosity L0, but also the qt distribution in
the non-perturbative region. We take two extreme possi-
bilities for the distribution in the region qt < q0. First, we
assume that there is no intrinsic transverse momentum in
the non-perturbative region, and set

L(qt < q0) = L0δ(q2
t ) (19)
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Fig. 3. The effect of partonic qt arising from the non-
perturbative (qt < q0), perturbative (qt > q0), and total contri-
butions to the ptγ spectrum of prompt photon production in pp
collisions at

√
s = 24.3 GeV and in pp̄ collisions at 1800 GeV.

Two extreme hypotheses are used for the non-perturbative con-
tribution, but the predictions are very similar (and in fact are
indistinguishable on the

√
s = 1800 GeV plot). We see that the

non-perturbative contribution dominates at
√

s = 24.3 GeV,
whereas the perturbative dominates at

√
s = 1800 GeV. The

hard scale µ is taken to be ptγ and q2
0 = 1.25 GeV2

with L0 given by (18). Second, we assume a wide Gaussian
distribution of partonic qt,

L(qt < q0) = L0
e−q2

t /q2
0

q2
0(1 − e−1)

, (20)

normalized to the region qt < q0. From the results shown
in Fig. 3 it turns out that the two extreme hypotheses, (19)
and (20), for the non-perturbative qt distribution lead to
a similar ptγ spectrum. Insight into why this result may
be anticipated can be obtained from the following simple
estimate.

On average the prompt photon gets one half of the qt

of the incoming partonic system. Thus the effect of the
partonic qt on the hard subprocess cross section is

dσ̂

dt̂
∼ 1

p′4
t

=
1∣∣ptγ − 1

2qt

∣∣4
→ 1

p4
tγ

[
1 +

3(ptγ · qt)2

p4
tγ

− q2
t

2p2
tγ

+ . . .

]

→ 1
p4

tγ

[
1 +

q2
t

p2
tγ

+ . . .

]
, (21)

after the angular integration. So the relative difference
between the qt < q0 effects calculated using (19) and (20)
is expected to be only about q2

0/2p2
tγ , since in the non-

perturbative domain 〈q2
t 〉 <∼ q2

0 .
At this point one may ask why the traditional phe-

nomenological treatments [6,7] of the intrinsic partonic qt

have found such a large effect. The reason is that the full
kinematics were not taken into account. Instead of giving
the Lorentz boost to the produced γ+parton system, the
photon on its own received the total partonic qt. To re-
produce the same effect with the correct kinematics would
require about twice as much partonic qt. Moreover strong-
ordering of transverse momenta should be imposed which
prevents the hard subprocess approaching the t̂ ∼ 0 re-
gion.

It is informative to discuss the results at the lowest
(UA6) and the highest (Tevatron) energies separately. At
the lowest energy we see from Fig. 3 that the contribution
from the perturbative (qt > q0) region is relatively small.
Thus, even though it depends on the choice of the hard
scale µ, the ambiguity is not so important. Moreover we
note that the two extreme choices of the non-perturbative
qt distribution, (19) and (20), give only a 20% uncertainty
in the ptγ spectrum. That is partonic qt smearing has lit-
tle effect on the ptγ spectrum, as may be anticipated from
(21). However there are other related points to consider.
We see that the formalism requires that the parton den-
sities are sampled at scale q0, which enhances the cross
section in comparison with the conventional leading order
treatment in which the partons are sampled at the hard
scale µ. The qt < q0 contribution depends on the scale µ
through the survival probabilities Ta and Tb in L0 of (18).
If, for illustration, we take the hard scale µ = cptγ then,
to double log accuracy with fixed αS , we have

Ta ' exp
(

−Ca

4π
αS(cptγ) ln2

(
cptγ

q0

))
. (22)

Thus an increase in scale, that is a larger c, makes dσ/dptγ

steeper and the cross section smaller. The prediction for
the prompt photon spectrum, dσ/dptγ , at the Tevatron en-
ergy is much more certain. Here the contribution for the
non-perturbative qt < q0 domain is negligible (see Fig. 3),
and so the calculation is more under control and is less
scale dependent. The difference between using (9) and us-
ing an “unsmeared” luminosity

Lab = δ(q2
t )a(x1, µ

2)b(x2, µ
2) (23)

is not great. The difference is due to the qt smearing itself
and also due to the fact that in (9) the partons are sampled
at qt. This latter effect was not incorporated in the existing
treatments of partonic smearing of the ptγ distribution.

To demonstrate the sensitivity to the choice of the hard
scale, in Fig. 4 we compare the results for µ = ptγ/2 with
those for µ = ptγ for three typical energies at which ex-
perimental measurements exist. A third choice of the hard
scale, µ = M/2, gives similar results to those obtained
with µ = ptγ . For comparison the unsmeared cross sec-
tions are shown by dashed curves. Very little of the dif-
ference between the continuous (qt 6= 0) and the dashed
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(qt = 0) curves is directly attributable to the introduction
of the partonic transverse momentum qt. As mentioned
above, the main difference is due to the proper inclusion
of the parton densities, which are sampled at scale qt (with
qt > q0) in contrast to the conventional unsmeared result
in which they are sampled at the hard scale µ. Of course
in a realistic fit to the data we would need to implement
the more precise form (3) of the unintegrated parton den-
sities, as well as computing the next-to-leading order ex-
pression for the hard subprocess cross sections. However
for the largest energy,

√
s = 1.8 TeV, where the ptγ is large

and leading order is a good approximation, the theoreti-
cal uncertainties are seen to be small4. In fact the µ = ptγ

prediction gives a reasonable description of the CDF data,
particularly at the larger values of ptγ , see Fig. 5. Figs. 4
and 5 also show that, in common with other analyses5,
there is a large disagreement between the predictions and
the ptγ shape of the E706 data.

5 Conclusions

This paper should not be regarded as an attempt to bet-
ter fit data, such as the ptγ spectrum of prompt photon
hadroproduction, but rather to illustrate the appropriate
formalism that should be used to incorporate the trans-
verse momenta of the incoming partons. The crucial point
is that, in general, according to the kt-factorization pre-
scription [3], cross sections should be calculated in terms
of parton distributions, fa(x, k2

t , µ2), unintegrated over the
transverse momentum. Such distributions can be construc-
ted from the conventional parton densities, a(x, λ2), as
described in Sect. 2.

Prompt photon hadroproduction is an ideal example
to illustrate the necessity of using unintegrated parton
distributions. For simplicity we chose to work to double
logarithm accuracy, rather than the full treatment pre-
sented in Sect. 2. Contrary to the existing phenomenolog-
ical treatments of the intrinsic transverse momenta of the
partons, we find that the qt effects give themselves only
a small modification to the dσ/dptγ spectrum. Of course
there could have been a large effect if qt ∼ ptγ which
would have allowed the singularity of the hard subprocess
amplitude to be approached. However the strong order-
ing of transverse momenta must be incorporated in the
formalism, via θ(|t̂| − q2

t ), which prevents this happening.
In addition, our study reveals that the qt of the incom-
ing partonic system should be correlated with the scale at
which the parton densities are sampled. This fact affects
both the shape and the normalization of the predictions,
especially at the lower energies.

An interesting result of our study of the parton lu-
minosity is that, at low energy where the contribution
from the qt > q0 region is small, the factorization proce-
dure is more direct and physically transparent. Recall that

4 The difference between the predictions for µ = ptγ and
µ = ptγ/2 may be considered as an estimate of the size of the
next-to- leading order contribution.

5 For example, see the (unsmeared) results in [4–7].
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Fig. 4. The scale dependence of the predictions for produc-
tion of prompt photons in pp collisions at

√
s = 24.3 GeV, pBe

collisions at
√

s = 38.8 GeV and pp̄ collisions at
√

s = 1.8 TeV
shown together with UA6 [8], E706 [9] and CDF [10] data re-
spectively. The continuous curves are the predictions with the
incoming partonic transverse momentum qt included, whereas
the dashed curves correspond to the unsmeared (qt = 0) re-
sults in which the integrated partons are sampled at the hard
scale µ. In each case the upper curve corresponds to the scale
µ = ptγ/2, while the lower corresponds to µ = ptγ

we have to introduce a factorization scale to separate the
hard subprocess interaction (which is calculated perturba-
tively) from the universal parton distributions which orig-
inate from large distances (that is, from the confinement
region). These incoming partons starting at the input scale
q0 participate in the perturbative evolution which changes
the original distributions. However for larger x (that is for
the lower energies) we sample the parton densities directly
at the low input scale q0, see Fig. 2 and (18). From the
form of the luminosity we see that essentially no new par-
tons appear in the evolution to larger values of qt. The
only perturbative effect is the introduction of the survival
probability, Ta, which has a simple physical interpretation
and does not alter the kinematics of the partons sampled.
This means that the low energy data6 measure the input
distributions directly. On the other hand at the smaller
values7 of x the perturbative contribution qt > q0 domi-
nates. In this case the partons evolve from the input scale
q0 and are finally sampled at the hard factorization scale

6 For example, UA6 data at ptγ = 5 GeV.
7 For example, Tevatron data at ptγ = 40 GeV.
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Fig. 5. A clearer comparison of the data also plotted in Fig. 4
with our theoretical calculations at the scale µ = ptγ ; we use
xT ≡ 2ptγ/

√
s as the transverse momentum variable

µ ∼ ptγ . The evolution of the integrated parton densities
in the conventional approach modifies the x behaviour of
the distributions assuming that the transverse momenta
kt of the partons is small. The formalism that is presented
here embodies the modification of the kt distributions of
the partons during the evolution, as well as the modifica-
tion of their x dependence. That is we are able to deter-
mine, perturbatively, the qt = |k1t + k2t| distribution of
the incoming partonic system, which leaves no room for
additional phenomenological qt smearing.

In summary, we have presented the formalism to con-
struct the parton distributions unintegrated over the par-
ton transverse momenta, fa(x, k2

t , µ2), from the known
conventional parton distributions. These distributions
should be used to calculate cross sections initiated by
hadrons. We applied the formalism to prompt photon had-
roproduction in the double logarithm approximation. In
this way we are able to quantify the effects of the partonic
transverse momentum, qt, on the transverse momentum,
ptγ , spectrum of the produced photons. We find that the
correct treatment requires that the integrated partons are
sampled at the scale qt. Clearly this is only meaningful
in the perturbative domain qt > q0, but we are able to
show that the uncertainty due to the contribution from
the non-perturbative domain is only of relative size of the
order of q2

0/2p2
tγ .
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